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1. Introduction

Vibration of a simply supported polygonal plate can be linked to a membrane vibration
problem. The relevant literature has been reviewed in Refs. [1,2] (see references cited) for a single-
layer plate and a symmetrically sandwich plate. More recently, the linking relations are extended
to an inhomogeneous plate and a spherical shallow shell [3–7]. Among the numerous works,
Irschik [8] is the only one who has studied the thickness-twist mode of a vibrating shear
deformable single-layer plate. The others only considered flexural and thickness-shear modes for a
mid-plane-symmetric plate as well as an in-plane dilatational mode for a materially asymmetric
plate about its mid-plane and a spherical shallow shell. Therefore, the missing in-plane rotational
and thickness-twist modes need an additional treatment.
There are five unknowns to be solved in Reddy’s third order plate theory [9–11] for an

inhomogeneous plate. For the vibration problem of a simply supported polygonal plate, the
predominantly in-plane dilatational, flexural and thickness-shear modes have been addressed in
Ref. [5]. It is governed by Dirichlet’s eigenvalue problem, mathematically similar to a vibrating
membrane with fixed edges. As will be seen in the present paper, the vibration associated with in-
plane rotational and thickness-twist modes, which is decoupled from the other three modes, is
governed by Neumann’s eigenvalue problem. The frequencies associated with the in-plane
rotational and thickness-twist modes are linked to the frequency of a vibrating membrane with
sliding edges. The frequency correspondences are established between the third order, first order
and classical plate theories via the membrane analogy. These correspondence relations also apply
to a spherical shallow shell. It is found that the new frequency correspondences are independent of
the elastic foundation parameters, hydrostatic in-plane pressure and radius of the spherical
shallow shell.
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2. Reddy’s third order theory for inhomogeneous isotropic plates

The present work starts from a plate of uniform thickness h, resting on a Winkler–Pasternak
elastic foundation, and subjected to in-plane initial hydrostatic pressure N per unit edge length.
The plate is made of an inhomogeneous material, and the material properties vary only in its
thickness direction. Let xif g be the Cartesian co-ordinate system and x3 ¼ 0 is the mid-plane of
the undeformed plate. Hereafter, a comma followed by a subscript i denotes the partial derivative
with respect to xi; and a repeated index implies summation over the range of the index with Latin
indices ranging from 1 to 3 and Greek indices from 1 to 2.
Using the Reddy third order plate theory [9–11], the steady state linear governing equations are

expressed as [5]

Nab;b þ I0o2ua � I4o2u3;a þ I5o2ja ¼ 0; ð1Þ

Mab;ab � Nu3;aa � ku3 þ Gu3;aa þ I4o2ua;a þ I0o2u3 � I1o2u3;aa þ I2o2ja;a ¼ 0; ð2Þ

Pab;b � Ra þ I5o2ua � I2o2u3;a þ I3o2ja ¼ 0; ð3Þ

where ua; u3 and ja are five basic unknowns on the plate mid-plane, o denotes an angular
frequency, k and G denote the Winkler–Pasternak foundation parameters [12], and
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where dab is the Kronecker delta. E � Eðx3Þ; n � nðx3Þ; m � mðx3Þ and r � rðx3Þ are Young’s
modulus, the Poisson ratio, the shear modulus and the mass density, respectively. For an isotropic
material, m ¼ E=2ð1þ nÞ: For a transversely isotropic material, m is taken as an extra independent
material parameter, i.e., the shear modulus normal to the isotropy plane x3=constant.
Substituting Eq. (4) into Eqs. (1)–(3) yields

1
2
b0ua;bb þ ða0 � 1

2
b0Þub;ba � a4u3;abb þ 1

2
b5ja;bb þ ða5 � 1

2
b5Þjb;ba

þ I0o2ua � I4o2u3;a þ I5o2ja ¼ 0; ð7Þ
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a4ua;abb � a1u3;aabb þ a2ja;abb � Nu3;aa � ku3 þ Gu3;aa

þ I4o2ua;a þ I0o2u3 � I1o2u3;aa þ I2o2ja;a ¼ 0; ð8Þ

1
2
b5ua;bb þ ða5 � 1

2
b5Þub;ba � a2u3;abb þ 1

2
b3ja;bb þ ða3 � 1

2
b3Þjb;ba � cja

þ I5o2ua � I2o2u3;a þ I3o2ja ¼ 0: ð9Þ

We decompose ua and ja into their potential and solenoidal parts as

ua ¼ U;a þ eaoV;o; ja ¼ F;a þ eaoC;o; ð10Þ

where eao is the two-dimensional permutation tensor. Then, Eqs. (7)–(9) become

a0r2U � a4r2u3 þ a5r2Fþ I0o2U � I4o2u3 þ I5o2F
� 	
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þ I4o2r2U þ I0o2u3 � I1o2r2u3 þ I2o2r2F ¼ 0; ð12Þ
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;o¼ 0; ð13Þ

in which r2 ¼ @2=@xa@xa is the two-dimensional Laplace operator. Note that the following are
invariants under the rotation about the x3-axis:

ua;a ¼ r2U ; eabua;b ¼ r2V ; ja;a ¼ r2F; eabja;b ¼ r2C: ð14Þ

The vibration modes associated with each term in Eq. (14) are called in-plane dilatational, in-
plane rotational, thickness-shear and thickness-twist modes, respectively.
We can recognize that Eq. (11) is the Cauchy–Riemann equation in a tensor form. Both parts

enclosed by a pair of parentheses in Eq. (11) are harmonic functions and thus satisfy a harmonic
equation. This is the same case for Eq. (13). We may regroup Eqs. (11)–(13) into the following two
matrix equations
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where there are three equations in Eqs. (15) and two equations in Eq. (16). Eqs. (15)1 and (16)1 are
two harmonic equations associated with the first and second harmonic functions in Eq. (11),
Eq. (15)2 is Eq. (12), and Eq. (15)3 and Eq. (16)2 are two harmonic equations associated with the
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first and second harmonic functions in Eq. (13). In Eq. (15), K ¼ ðKIJÞ is a 3
 3 operator matrix
defined by

K11ðr2Þ ¼ a0r2 þ I0o2; K12ðr2Þ ¼ �a4r4 � I4o2r2;

K13ðr2Þ ¼ a5r2 þ I5o2; K21ðr2Þ ¼ a4r2 þ I4o2;

K22ðr2Þ ¼ �a1r4 � ðN � G þ I1o2Þr2 � k þ I0o2;

K23ðr2Þ ¼ a2r2 þ I2o2; K31ðr2Þ ¼ a5r2 þ I5o2;

K32ðr2Þ ¼ �a2r4 � I2o2r2; K33ðr2Þ ¼ a3r2 � c þ I3w
2: ð17Þ

We notice that the functions U, u3 and F have been decoupled from V and C.

3. Simply supported polygonal plates

For a simply supported polygonal plate, the boundary conditions are

NNN ¼ 0; MNN ¼ 0; PNN ¼ 0; ð18Þ

u3 ¼ 0; uT ¼ 0; jT ¼ 0; u3;T ¼ 0; ð19Þ

where the upper case subscripts N and T denote, respectively, normal and tangential directions to
the boundary, and the implicit summation convention does not apply to them. In terms of
equations (4)1 and (19), the boundary conditions (18) reduce to
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Recalling the Gram theorem [13], we have detðaÞ > 0 in the third order plate theory. Thus, Eq. (20)
gives

uN;N ¼ 0; u3;NN ¼ 0; jN;N ¼ 0 ð21Þ

or

r2U ¼ 0; r2u3 ¼ 0; r2F ¼ 0: ð22Þ

Using Eqs. (15), (19)1 and (22) leads to
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or

r4U ¼ 0; r4u3 ¼ 0; r4F ¼ 0; ð24Þ

and more generally,

r2JU ¼ 0; r2J�2u3 ¼ 0; r2JF ¼ 0 ðJ ¼ 1; 2; 3;?Þ: ð25Þ
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Using Eqs. (11), (13), (19) and (22) leads to

b0 b5

b5 b3
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r2C

" #
;N

¼
0

0

" #
: ð26Þ

As b0b3 � b25 > 0; we have

r2V;N ¼ 0; r2C;N ¼ 0; ð27Þ

and furthermore, using Eq. (16),

r4V;N ¼ 0; r4C;N ¼ 0: ð28Þ

4. Membrane analogy

Eq. (15) associated with the boundary conditions (25) has been studied in Ref. [5]. Eq. (16) and
the associated boundary conditions (27) and (28), which were missing in that work, constitute a
new eigenvalue problem. Because Eqs (7)–(9) underlying the Reddy third order plate theory are of
the 12th order, it is therefore expected that there are six characteristic roots l’s. Four
characteristic roots are associated with Eq. (15) and have been addressed in Ref. [5]. The
remaining two come from Eq. (16).
Following the same procedure adopted in Ref. [5], we may obtain the following eigenvalue

problem from Eqs. (16), (27) and (28):

det Lðr½ 2Þ�L ¼ 1
4
ðb0b3 � b25Þðr
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��
G¼ ðr2L;NÞ

��
G¼ 0 ð29Þ
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; ð30Þ

L is either r2V or r2C; G denotes the polygonal edges, and l1 and l2 are two roots of the
quadratic equation

det½Lð�lÞ� ¼ 0: ð31Þ

Let lm and H be the eigenvalue and the transverse deflection of a vibrating membrane with sliding
edges. The corresponding governing equation is the Helmholtz equation and the corresponding
boundary condition is of Neumann’s type [14]:

ðr2 þ lmÞH ¼ 0; H;N ¼ 0: ð32Þ

By analogy, the boundary value problem (29) for the polygonal plate is similar to Eq. (32)
providing that the membrane has the same contour as the plate. The plate executes membrane-like
vibration of Neumann’s type and their vibration frequencies are connected by

det½Lð�lmÞ� ¼ det �1
2
lm

b0 b5

b5 b3 þ 2c=lm

" #
þ o2

I0 I5

I5 I3

" #( )
¼ 0: ð33Þ
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Moreover, a Neumann-type eigenvalue problem contains a denumerably infinite sequence of
discrete non-negative eigenvalues corresponding to non-trivial real eigenfuctions. The zero
eigenvalue is associated with a constant non-zero deflection of a sliding membrane. Therefore, we
have lmX0. The vibration frequencies of the polygonal plate at lm=0 are

o2
minimum ¼ 0; I0c=ðI0I3 � I25 Þ; ð34Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I0c=ðI0I3 � I25 Þ

q
is a lower bound of the vibration frequency associated with the

predominantly thickness-twist mode.
Clearly, Eq. (15) provides three natural frequencies associated with one predominantly in-plane

dilatational ðua;aÞ; one predominantly flexural ðu3Þ and one predominantly thickness-shear ðja;aÞ
vibrating mode, while Eq. (16) provides two natural frequencies associated with one
predominantly in-plane rotational ðeabua;bÞ and one predominantly thickness-twist ðeabja;bÞ
vibrating mode. This is consistent with such a shear deformable plate theory that yields five
natural frequencies. Eqs (15) and (25) constitute a boundary value problem of Dirichlet’s type and
have been discussed in Ref. [5]. This boundary value problem is mathematically similar to a
uniform membrane whose shape coincides with the same contour as the plate, is fixed at the edges
and is executing small transverse vibration. Eqs (16), (27) and (28) constitute a boundary value
problem of Neumann’s type. This boundary value problem is mathematically similar to a
vibrating uniform membrane with sliding edges.

5. The first-order and classical plate theories

The first order shear deformation plate theory and the classical plate theory correspond to
gðx3Þ ¼ x3 and 0 instead of Eq. (6)2. Without giving details of the derivation, the final result of the
frequency correspondence between a polygonal inhomogeneous plate using the first order and
classical plate theories and a membrane with sliding edges of same contour is

det �1
2
lm

b0 b4

b4 b1 þ 2cf =lm

" #
þ o2

f

I0 I4

I4 I1

" #( )
¼ 0; ð35Þ

�1
2
lmb0 þ I0o2

c ¼ 0; ð36Þ

where of and oc are frequencies associated with the first-order and classical plate theories,
and

cf ¼ k
Z h=2

�h=2
m dx3 ð37Þ

with the shear correction factor k. Due to the assumption in the classical plate theory that a
normal to the mid-plane of an undeformed plate remains normal to the mid-plane during
deformation, the frequency oc is only associated with the in-plane rotational vibration mode and
the thickness-twist vibration cannot be predicted by the classical plate theory.
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6. A spherical shallow shell of polygonal planform

The vibration problem of a simply supported spherical shallow shell of polygonal planform has
been studied in Refs. [6,7]. It is found that the shell exhibits membrane-like vibration. Using the
third order and the first order shear deformation theories and the classical theory, exact vibration
frequencies of the spherical shallow shell associated with the predominantly in-plane dilatational,
flexural and thickness-shear vibrations are obtained in terms of the frequency of a vibrating
membrane. The corresponding membrane is flat, fixed at its edges, and its contour coincides with
that of the shell planform. However, the vibration problem associated with predominantly in-
plane rotational and thickness-twist modes were not addressed therein.
The detailed governing equations and boundary conditions for a simply supported spherical

shallow shell of polygonal planform have been given in Ref. [7], where the hydrostatic in-surface
pressure N was excluded. They are not duplicated herein for brevity. The vibration eigenvalue
problem associated with predominantly in-plane rotational and thickness-twist modes can be
shown to be exactly the same as Eqs. (16), (27) and (28). Thus, the final frequency
correspondences between a vibrating membrane with sliding edges and a simply supported
spherical shallow shell of polygonal planform using the Reddy third order plate theory, the
first-order plate theory and the classical plate theory are the same as Eqs. (33), (35) and (36).
It is interesting to find that these relations are independent of the radius of the spherical shallow
shell.

7. Independent check

In order to conduct an independent check on the frequency correspondences between the
membrane eigenvalues and the vibration frequencies of a polygonal plate, we select a
homogeneous single-layer rectangular plate as an example for which the three-dimensional
elastic solution is available. Because the plate is symmetric about its mid-plane, the vibration
frequency associated with the in-plane rotational mode is decoupled with the frequency associated
with the thickness-twist mode. From Eqs (33) and (35), the frequency associated with the
thickness-twist mode is predicted by Reddy’s third order plate theory and Mindlin’s first order
plate theory [15] as

%o2 ¼ %lm þ 168=17; %o2
f ¼ %lm þ p2; ð38Þ

where

%o ¼ oh
ffiffiffiffiffiffiffiffi
r=m

p
; %of ¼ of h

ffiffiffiffiffiffiffiffi
r=m

p
; %lm ¼ lmh2: ð39Þ

It is known that the vibration eigenvalue and mode of a rectangular membrane is given by [14]

lm ¼ p2
k2

a2
þ

l2

b2

� �
; H ¼ H0cos

kpx1

a
cos

lpx2

b
: ð40Þ

Table 1 shows some numerical results calculated from Eq. (38) for a ¼ b ¼ 10h: These results are
exactly the same as those obtained in Ref. [16] by directly solving the shear deformable plate
problem. This confirms the correctness of our frequency correspondences presented in this paper.
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Note that the exact three-dimensional elastic solution matches with that from the Mindlin plate
theory. This is because the shear correction factor was purposely taken as k ¼ p2=12 in the
Mindlin first order plate theory [15] in order to match the three-dimensional solution.
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Table 1

Independent check on the correspondence relation of the frequencies associated with the thickness-twist mode ða ¼
b ¼ 10hÞ

k l Membrane eigenvalue %lm First order/3-D exact %of

ðk ¼ p2=12Þ
Reddy’s 3rd order %o

1 1 0.1974 3.1729 3.1749

1 2 0.4935 3.2192 3.2212

1 3 0.9870 3.2949 3.2969

2 2 0.7896 3.2648 3.2668

2 3 1.2830 3.3396 3.3415

2 4 1.9739 3.4414 3.4433

3 3 1.7765 3.4126 3.4145

4 4 3.1583 3.6094 3.6112
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